1. λ2*1
  2. Nⁿ₀(x₁...xₙ)
    1. + N₀ N₁ ↦ + ⊕ N₀ N₁ (×2) ∧ N₀ N₁
  1. + N₀ N₁ ↦ + ⊕ N₀ N₁ (×2) ∧ N₀ N₁
  2. + ⊕ N₀ N₁ (×2) ∧ N₀ N₁
  3. + ⊕ N₀ N₁ (×2) N₂
  4. ✓+ ⊕ N₀ N₁ + N₂ N₂
    1. Nⁿ(x₁,...,xₙ) ↦ Nⁿ⁺¹(x₁,...,xₙ,0)
  5. + ⊕ N₀ N₁ ...
  6. + ⊕ N₀ N₁ N₃
  7. + N₄ N₃
  8. + ...
  9. N₅
ƒ x y ↦ ƒ ⍎{x ∣ 16} x y ×₂ ⍎{y ∣ 16 } x y
{(a₀,b₀,c₀,d₀), (a₁,b₁,c₁,d₁)} ↦ { [a₀,...,d₁] (b₀,c₀,d₀,0), (0,a₁,b₁,c₁)}
P(x,w) → X:P(w)
P(x,y,z) → X:y∈∅→y∈z

  1. ⊢P(x,y,z)
  2. ⊢Z:P(x,y) → X:H(y)
  3. ⊢X:P(y,z) → X:¬H(y) ∧ Z:H(y)
  4. ⊢∀(t,S) T(t,S₀) → T(t+n,S₁)
  1. ⊢P(x,y,z)
  2. X:H(y)
  3. X:¬H(y)
  4. Z:H(y)
  5. X:H(y) ∧ X:¬H(y)!!
  6. ☞T(t₀,X:H(y)) ∧ T(t₁,X:¬H(y) ∧ Z:H(y))
  7. ∴P(x,y,z) → ☞T(t₀,X:H(y)) ∧ T(t₁,X:¬H(y) ∧ Z:H(y))
  8. ∴Y:Q(x,z) := H(x,_) → ¬H(x,_) ∧ H(z,_)
  9. ∴X⊉Z???

P:={A,B,C,D,E} R:={X,Y,Z}
Goals: S(x) → ????? → G(x)

ϖP(x)◻→Q(x)⇝⊤:⍎A(),⊥:⍎B()
𝒜𝓈𝓈ℯ𝓇𝓉 P(x)
M(x) ⇝B()
ABCDE
X
Y
Z
∃!(x,y)x∈{A,B,C,D,E} ∧ y∈{X,Y,Z}.
⊢{X,Y,Z}::G(s)
find S(s)..._::G(s) of known F(s) so that if x∈P does that x = y∈R.
Form and test hypothesises ϖF()◇→G()∨H()⇝G()::do this; H():: do that...
Cross check with own G to not do anything stupid...




Time travel!
T(1,S(a)) ∧ T(2,S(b))T(2,S(q)) ∧ T(3,S(c))
Handle contradictions as they arise, or run through the timeline and "fix" it.


odd,even,ibr
1 is odd, 2 is even, 3 ∧ 0 is ibr.
if a number is ibr it is also odd, unless it is zero.

if it is B,S then ""→"". thus ¬""→""∨¬""
if it is 2B,2S then if Bₓ=Sₓ then Bₓ≠Sₓ (¬◻B∈S!)


f(x) ↦ (x↦y∧x,y∈ℕ)
f(x) ↦ λN˙(x↦y∧x,y∈N) y₀∩ℕ

or
f(x) ↦ g₀(x₀,ℕ) ↦ g₁(x₁,ℕ∩x₀) ↦ ... gₙ(xₙ,ℕ∩x₀∩...∩xₙ₋₁) ↦ xₙ (ℕ∩x₀∩...∩xₙ₋₁∩xₙ = {∅}). g(x,N) ↦ h(y), y∈N.
invert g(x,ℕ∩...∩y)???